Raven Protocol

價格

(raven)
注意:平台尚不支援該幣種的交易服務
$0.00038533 +1.9%

      概覽

      raven 價格即時數據

      raven 價格資訊

      24h最低價/最高價

      24h最低價 $0.00037813
      24h最高價 $0.0004105

      歷史最高價

      US$0.00454777

      歷史最低價

      US$0.00006247

      7天最高價

      US$0.00047603

      7天最低價

      US$0.00034048

      raven 市場資訊

      市值排名

      3432

      完全攤薄估值

      US$3874968

      總供應量

      10,000,000,000

      最大供給

      市值優勢

      0%

      流通量/總市值

      0.000

      關於 raven

      Raven Protocol's specific use case is to perform AI training where speed is the key. We're taking a 1M image dataset that takes 2-3 weeks to train on AWS down to 2-3 hours on Raven. AI companies will be able to train models better and faster. Raven Protocol is creating a self-sustaining and dynamic ecosystem for: Customers who want to train their AI engines; and/or Contributors who would like to share their compute resources in the form of Computers, Smartphones, or even a server rack. Raven Tokens (RAVEN) will work as the common ground to facilitate a secure transaction that will take place inside our ecosystem. Enterprise clients who want to rent compute power will do so with RAVEN and contributors of the compute power will be rewarded in RAVEN. Raven is creating a network of compute nodes that utilize idle compute power for the purposes of AI training where speed is the key. A native token is the key to bootstrapping a nascent network. We want to incentivize and reward people all over the world to contribute their compute power to our network. Additionally, we will reward token holders for running masternodes which will be responsible for orchestrating the training of various deep neural networks. Our consensus mechanism is something we call Proof-of-Calculation. Proof-of-Calculation will be the primary guideline for the regulation and distribution of incentives to the compute nodes in the network. Following are the two prime deciders for the incentive distribution: Speed: Depending upon how fast a node can perform gradient calculations (in a neural network) and return it back to the Gradient Collector. Redundancy: The 3 fastest redundant calculation will only qualify for receiving the incentive. This will make sure that the gradients that are getting returned are genuine and of the highest quality.

      熱門榜

        暫無數據

      漲幅榜

        暫無數據

      跌幅榜

        暫無數據

      新幣榜

        暫無數據

      © 2018-2024 XT.COM. 版權所有。 | 用戶協議 | 隐私条款